
Bachelorstudium Medizintechnik

Studienrichtung
Medizinische Gerätetechnik,
Produktionstechnik & Prothetik
(MB/CBI/WW)

Stand 06/2024

Vertiefungsrichtung MB/WW/CBI: Beteiligte Departments

Studienplan – Modulgruppe B6

	ECT S	3. Semester (WS)	4. Semester (SS)	5. Semester (WS)					
2,5		B 6. Produktion	B 6.8.1** Licht in der Medizintechnik						
	2,5 ECTS	2,5 ECTS	5 ECTS**						
Maschinenbau		B 6.2 Werkstoffe und ihre Struktur	B 6.5 Biomechanik	B 6.8.2** Robotik in der Medizintechnik					
Werkstoff-		5 ECTS	2,5 ECTS	5 ECTS **					
wissen- schaften Chemie-/ Biologie- Ingenieurs- wesen	40	B 6.3 Grundlagen der Messtechnik	B 6.6.1* Technische Thermodynamik	B 6.8.3** Qualitätstechniken für die Produktentstehung					
		5 ECTS	5 ECTS*	2,5 ECTS**					
		B 6.4 Technische Darstellungslehre I	B 6.6.2* Methode d. finiten Elemente	B 6.8.4** Dynamik starrer Körper					
		2,5 ECTS	5 ECTS*	7,5 ECTS**					
			B 6.7 Surfaces of Biomaterials						
			2,5 ECTS						
Summe ECTS	40	15 ECTS	12,5 ECTS	12,5 ECTS					

^{*} Spezialisierung Gerätetechnik und Prothetik I: Auswahl 1 aus 2

^{**} Spezialisierung Gerätetechnik und Prothetik II: Auswahl von insg. 12,5 ECTS

Studienplan – Wahlvertiefungsbereich B8

Studienrichtung Gerätetechnik & Prothetik (MB/CBI/WW)										
Dynamik starrer Körper ²	DSK	3+2+0+2	7,5	7,5	0	DE	PL	MB		ws
Übung									Lehrstuhl für Technische Dynamik (LTD)	
Tutorium										
Mehrkörperdynamik	MKD	3+1+0+0	5	5	Ö	DE	PL	MB	Lehrstuhl für Technische Dynamik (LTD)	WS
Übung									Echilotani far Technisone Dynamik (ETD)	
Theoretische Dynamik	TheoDyn	2+2+0+0	5	0	5	DE	PL	MB	Lehrstuhl für Technische Dynamik (LTD)	SS
Übung (wird aktuell nicht angeboten)									Letifstuff für Technische Dynamik (LTD)	
Dynamik nichtlinearer Balken	DyNiLiBa	3+1+0+0	5	0	5	DE	PL	MB	Lehrstuhl für Technische Dynamik (LTD)	SS
Übung (wird aktuell nicht angeboten)									Letifstuff ful Technisoffe Dynamik (LTD)	
Geometric numerical integration	GNI	3+1+0+0	5	0	5	EN	PL	MB	Lehrstuhl für Technische Dynamik (LTD)	SS
Übung									Lenistani far Technische Dynamik (LTD)	
Maschinenelemente I	ME1	2+2+0+0	5	5	0	DE	PL	MB	Lehrstuhl für Konstruktionstechnik (KTmfk)	WS
Übung ehemals "Grundlagen der Produktentwicklung"				2					Lenistani tai Konstiaktionstechnik (Kimik)	
Methodisches und Rechnerunterstütztes Konstruieren	MRK	3+1+0+0	5	5	0	DE	PL	MB	Lehrstuhl für Konstruktionstechnik (KTmfk)	ws
Übung									Lenistani tai Konstiaktionsteelinik (Killik)	
Technische Darstellungslehre II	TD II	0+0+0+2	2,5	0	2,5	DE	SL	MB	Lehrstuhl für Konstruktionstechnik (KTmfk)	SS
recimische Darstenungsiehre in									Lenistani tai Konstiaktionstechnik (Killik)	
Tashnisaha Draduktasataltuna	TPG	3+1+0+0	5	0	5	DE	PL	МВ	Labratuhl für Kanatruktionataahnik (KTmfk)	SS
Technische Produktgestaltung									Lehrstuhl für Konstruktionstechnik (KTmfk)	
Methode der Finiten Elemente ²	FEM	2+2+0+2	5	0	5	DE	PL	MB		SS
Übung									Lehrstuhl für Technische Mechanik (LTM)	
Tutorium										
Lineare Kontinuumsmechanik	LKM	2+2+0+2	5	5	0	DE	PL	MB		WS
Übung									Lehrstuhl für Technische Mechanik (LTM)	
Tutorium										

Studienplan – Wahlvertiefungsbereich B8

Nichtlineare Kontinuumsmechanik Übung	NLKM	2+2+0+0	5	0	5	DE	PL	МВ	Lehrstuhl für Technische Mechanik (LTM)	SS
Kontaktmechanik (wird aktuell nicht angeboten)	KoMech	2+0+0+0	2,5	0	2,5	DE	PL	MB	Lehrstuhl für Technische Mechanik (LTM)	SS
Nichtlineare Finite Elemente / Nonlinear Finite Elements Übung	NLFE	2+2+0+0	5	5	0	EN	PL	MB	Lehrstuhl für Technische Mechanik (LTM)	WS
Die Werkzeugmaschine als mechatronisches System	WZM MS	2+0+0+0	2,5	2,5	0	DE	PL	MB	Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik (FAPS)	WS
Mechatronische Systeme im Maschinenbau II	MS-MB II	2+0+0+0	2,5	0	2,5	DE	PL	MB	Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik (FAPS)	SS
Einführung in die Biomedizinische Technik NEU ab SS23	PW ВМТАВ	2+0+0+0	2,5	2,5	0	DE	PL		Lehrstuhl für Biophysik (Prof. Dr. Fabry)	WS

¹ Nur ein Modul darf belegt werden - siehe Sockel beider Studienrichtungen

zusätzlich: alle Module aus der Modulgruppe B5 & B6 der FPO-Versionen 2013, 2018 und 2019, die dort nicht belegt wurden

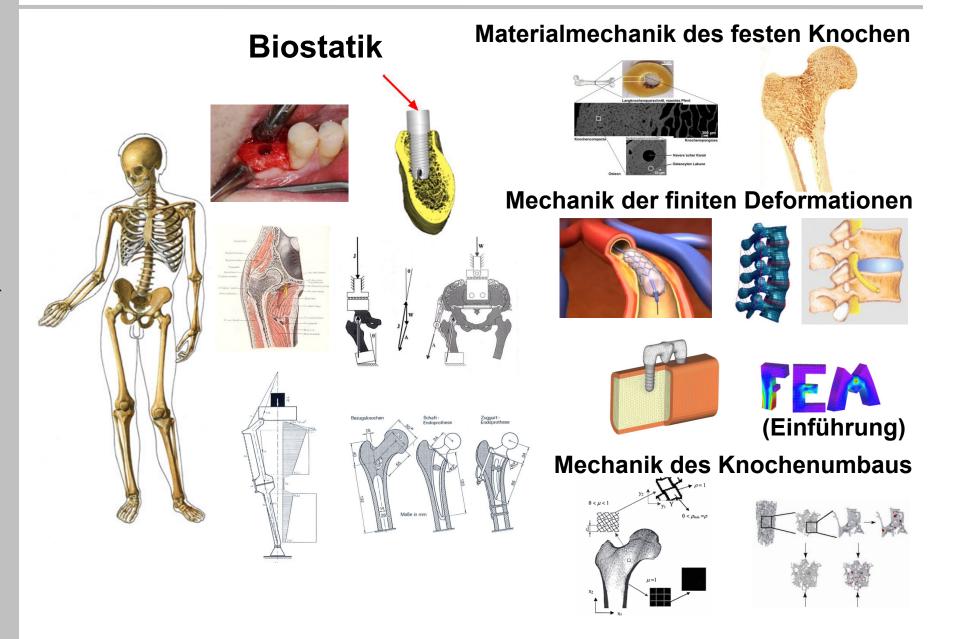
Die genannten Lehrveranstaltungen können mit zusätzlichen Übungen und Praktika ergänzt werden.

In Ausnahmefällen kann ein Wechsel der Prüfungsform stattfinden. Diese Information ist den Studierenden spätestens zwei Wochen nach Vorlesungsbeginn mitzuteilen und im Modulhandbuch festzuhalten.

Pfp Portfolioprüfung (Kombination aus PL + SL od. mehreren Prüfungsteilen)

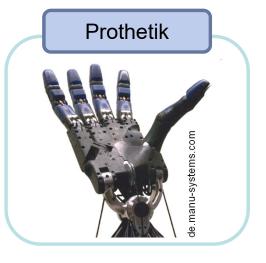
PL Prüfungsleistung (benotet)

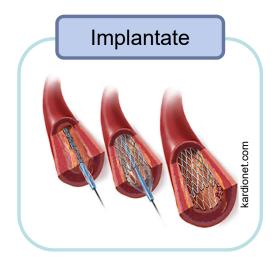
SL Studienleistung (unbenotet)


s schriftlich

m mündlich

o online


² Nur belegbar, wenn nicht bereits im Rahmen von B6 belegt


Biomechanik (LTM/LTD)

Produktentwicklung (KTmfK)

Medizintechnische Produkte stellen hochkomplexe Systeme dar

Methodische Vorgehensweise bei der Produktentwicklung unter Nutzung moderner CA-Werkzeuge

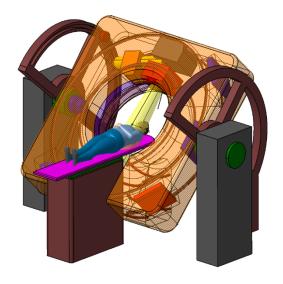
→ Methodisches und rechnerunterstütztes Konstruieren

Ganzheitliche Produktentwicklung im Wechselfeld von Mensch – Organisation – Technik – Methoden

→ Integrierte Produktentwicklung

Kinematikentwicklung (FAPS)

Medizinische Handhabungsgeräte unterliegen kontinuierlich steigenden Anforderungen


Kinematikentwicklung für medizinische Großgeräte

Kinematikanforderungen

Gestiegene Anforderungen an Flexibilität,
 Traglast, Genauigkeit und Arbeitsabläufe
 durch neue Diagnose- und Therapieformen

Neue Kinematikkonzepte

- Detaillierte Anforderungs- und Bewegungsraumanalysen
- Simulationsgestützte Entwicklung und Analyse neuer Kinematikkonzepte
- Effiziente Systemlösungen

Sensorentwicklung (FAPS)

Medizinische Handhabungsgeräte unterliegen kontinuierlich steigenden Anforderungen

Steigerung der Positioniergenauigkeit medizinischer Geräte

Genauigkeitsanforderungen

- Steigerung der Behandlungsqualität durch hochpräzise Medizinroboter bzw.
 Positioniergeräte
- Klassische Kalibrierungsverfahren meist unzureichend und teuer

Sensorbasierte Positionierung

- Einsatz optischer Messsysteme zur Regelung der Soll-Positionen
- Online überwachte, absolutgenaue medizinische Handhabungsgeräte

Messtechnik (FMT)

Messen in der Medizin – Was wird gemessen?

Bildquelle: DPA

Größen und Parameter eingeteilt entsprechend ihrer physikalischen Eigenschaften:

- Akustische Größen (Herzschall, Lungengeräusche, Sprache)
- Chemische Größen (Stoffzusammensetzungen, Konzentrationen)
- Elektrische und Magnetische Signale (elektrische Potentiale, Ionenströme)
- Mechanische Größen (Größe, Form, Bewegungen, Beschleunigung, Flow),
- Optische Größen (Farbe, Lumineszenz)
- Thermische Größen (Körpertemperatur)

Das Messen in der Medizintechnik dient der objektiven Beschreibung des Zustandes eines Patienten und dessen Organe, der Diagnose-Erstellung sowie der Sicherstellung der Gerätefunktion bei Therapie und Operation. Die Messwerte müssen reproduzierbar und vergleichbar sowie auf die international anerkannten SI-Einheiten rückführbar sein.


Ohne Messtechnik ist heute keine komplexe Operation mehr möglich!

Fertigung medizintechnischer Komponenten (LFT/LKT)

Kunststofftechnik in der Medizintechnik (LKT)

Kunststoffe und ihre Eigenschaften

- Polymerchemie
- Herstellung, Aufbereitung
 - Füllstoffe, Additive

Kunststoffverarbeitung

- Spritzgießen, Extrusion
- Sonderverfahren
- Umformverfahren

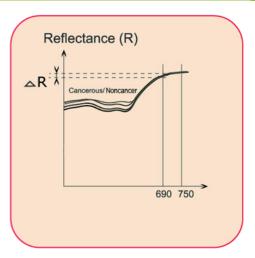
Konstruieren mit Kunststoffen

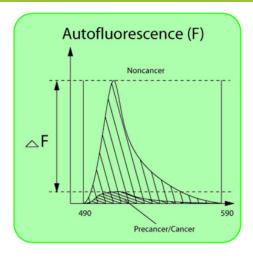
- Dimensionieren
- Methodisches Konstruieren
 - Bauteilauslegung

Lasertechnik in der Medizintechnik (LPT)

Laserstrahlbohren von chirurgischen Nadeln

Laserstrahlgeschnittene **Stents** (Gefäßwandstützen)

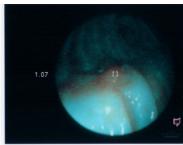

Siebkorb zum Sterilisieren medizinischer Instrumente

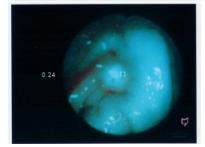

Laserstrahlschweißen von Mikrosonden

Krebserkennung durch Autofluoreszenz (LPT)

Weißlichtbeleuchtung

Reflexions- und Autofluoreszenzspektrum gesunden und malignen Gewebes


Autofluoreszenz



P

Polyp vor der
Behandlung: maligner
Bereich in der
Autoflurezenz-Aufnahme
erkennbar

Gewebe nach der Resektion

2 Minuten Wissen: Wie kommen die Falten in unser Gehirn?

https://www.youtube.com/watch?v=Ba-zgJCdGnI

